منابع مشابه
Hankel Operators on Hilbert Space
commonly known as Hilbert's matrix, determines a bounded linear operator on the Hilbert space of square summable complex sequences. Infinite matrices which possess a similar form to H, namely those that are 'one way infinite' and have identical entries in cross diagonals, are called Hankel matrices, and when these matrices determine bounded operators we have Hankel operators, the subject of thi...
متن کاملOn Truncations of Hankel and Toeplitz Operators
We study the boundedness properties of truncation operators acting on bounded Hankel (or Toeplitz) infinite matrices. A relation with the Lacey-Thiele theorem on the bilinear Hilbert transform is established. We also study the behaviour of the truncation operators when restricted to Hankel matrices in the Schatten classes. 1. Statement of results In this note we will be dealing with infinite ma...
متن کاملDistorted Hankel Integral Operators
For α, β > 0 and for a locally integrable function (or, more generally , a distribution) ϕ on (0, ∞), we study integral ooperators G α,β ϕ on L 2 (R +) defined by G α,β ϕ f (x) = R+ ϕ x α + y β f (y)dy. We describe the bounded and compact operators G α,β ϕ and operators G α,β ϕ of Schatten–von Neumann class S p. We also study continuity properties of the averaging projection Q α,β onto the oper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1974
ISSN: 0002-9939
DOI: 10.2307/2040483